Lecture 11 on Oct. 21 2013

We already introduced the functions e?, log z and z%. Now we consider the mappings given by these functions
and their compositions.

Exponential mapping First of all, we consider e*. Given line x = g, we know that the points on
this line can be parametrized by xy + iy, where y is a variable. Therefore under the mapping of e*, these
points are mapped to e*°e?¥. Clearly for any y, e*0e?¥ lies on the circle C' whose center is 0 and radius is
e”. While y varies from —oo to oo, the imaging points circulate along the circle C' infinitely many times.
Of course, e® is not 1-1 when restricted on the whole line x = xy. But when we restrict e* to a segment on
x = x9 whose length is smaller than 2w, e* is a 1-1 mapping. Now we consider the line y = yq. all points
on this line are parametrized by  + iyg. Therefore by e, these points are mapped to e®e?o. Clearly all
imaging points share same argument, yo. While x varies from —oo to oo, e* runs from 0 to co. Therefore e?
maps y = yo to a ray with argument yo. Notice that the origin is not on the image. Moreover this mapping
is 1-1 in that e® is a one-one function. Now we give two lines y = y; and y = yo. If |y2 — y1| < 27, then e* is
1-1 on the strip L whose boundaries are given by y = y1, y = y2. Moreover e* send y = y; to the ray with
argument y;. It also sends y = y2 to the ray with argument y = y». Furthermore, it sends all points on the
strip L to points with argument between y; and ys.

log mapping Since logz is the inverse function of e*, we can transform regions between two rays to
a strip. Now we use one example to show applications of translation, dilation and log z.

Example 1: transform A = {n/4 < 6 < 3w/4} onto the strip L = {1 < y < 2}.

Step 1. cut the negative z-axis from the complex plane and let arguments for the remaining points lie
on the interval [—m, 7). Using this branch, we define a log function log z = log | z| +iarg(z), where arg(z) lies
in [—m,7);

Step 2. Using the log function in Step 1, we can map A to the strip Ly = {n/4 < y < 3w/4}. Defin-
ing wy = 2z/m, Ly is mapped to Ly = {1/2 <y < 3/2};

Step 3. Translating Lo by 1/2 along the positive direction of the y-axis, we are done. So the mapping
realizing A to L is (2logz)/m +i/2.

power functions Choosing a branch for log z, we can write log z = log|z| + iarg(z). by definition of
power functions, we have
20— ea(log|z|+iarg(z)) _ |Z|o¢6iaarg(z),

where we assume « is a real number. Therefore we have |z%*| = |z|, arg(z®) = aarg(z). The main applica-
tion of power functions is to change argument for points on a ray.

Example 2: Letting A be the region on C without negative x-axis and B be the right part of the imaginary
line, then z'/2 sends A to B. Here we choose the same branch for log z as Step 1 of Example 1. Clearly
by this branch, arg(z) lies in [—m,7), where z is on A. by definition of power functions, z'/? has argument
arg(z)/2. Therefore arg(z'/?) lies on [—7/2,7/2), for all z in A.

Mapping for C\ [-1,1] We now try to map C\ [—1, 1] to the interior of the unit disk.

Step 1: Letting wy; = (z +1)/(z — 1), we can map [—1, 1] to the negative part of the z-axis;

Step 2: By the power function in Example 2, we have ws = wi/ 2, which maps the complement set of

the negative part of the xz-axis to the right part of the imaginary line;



Step 3: Using ws = (wy — 1)/(w2 4+ 1), we can map the right part of the imaginary line to the interior
of the unit disk. Compose the above three steps, the mapping we need is
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The inverse mapping of (0.1) Sovling z in (0.1) by w, one can easiliy show that
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Now we are going to study this mapping in details. Assuming w = pe?® and z = x + iy, it holds
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Fixing pg < 1 and letting 6 be a variable running from [0, 27), then w variable vary along some circle
C with radius po once. Here C' is centered at the original point. Moreover by (0.3), one can eleminate the
variable 6 and show that the image of C' satisfies the equation
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Clearly it is an ellipse with foci locating at —1 and 1. Now we begin to decrease p from pg to 0. By this
means, we want to find the image of the disk enclosed by C under the mapping (0.2). Noticing that when
p < 1, the function p + p~! is strictly decreasing. While p | 0, we have p + p~! 1 co. Therefore the major
axis of the ellipse is expanding while p is decreasing. Samely p~! — p is also decreasing with respect to p.
This shows that the minor axis is also expanding while p decrease to 0. So we know that while we decrease
p from pg to 0, it helps us sweep out the whole exterior part of the ellipse. up to now, we show that (0.2)
maps the disk enclosed by C to {the exterior part of the ellipse} U {c0}.

Now we fix 0y and letting p be a variable. Clearly w variable now vary along a ray L with argument
6. Still using (0.3) to eleminate variable p, we know that the image of the ray L under the mapping (0.2)
should satisfy
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It is a hyperbola with two branches. Moreover the associated foci are also located at —1 and 1. Some remarks
have to be put here. If we assume 6y lies in (0,7/2), then by (0.3) z variable is always positive. Therefore
the ray L is mapped to the right branch of the hyperbola. Secondly since p — p~! is an increasing function,
y coordinate for imaging point is increasing while we increase p from —oco to +o0o. Therefore the mapping
(0.2) is one-one mapping from the ray L to the right branch of (0.4). Now we increase 6 variable from 6
to m — 0. On (6p,7/2), cos function is decreasing. Therefore the imaging hyperbola is moving left-ward
while 6 is increasing. When 6 = /2, the image is the whole imaginary line. On the interval (/2,7 — 6)),
cos function is still decreasing but negative. Now the corresponding ray with argument € is mapped to the
left branch of the corresponding hyperbola. Therefore the above arguments show that (0.2) maps the region
{6p < 6 < 7 —0p} to the region enclosed by the two branches of the hyperbola (0.4). the mapping is one-one
and onto.



